REACTION OF ALKENES AND DIENES WITH *t*-BUTYLMAGNESIUM HALIDES AND ZIRCONOCENE DIHALIDES. A CONVENIENT PROCEDURE FOR HYDROZIRCONATION AND A NOVEL *t*-BUTYLZIRCONATION OF CONJUGATED ALKENES¹

Ei-ichi Negishi,^{*} Joseph A. Miller and Tadao Yoshida Department of Chemistry, Purdue University, W. Lafayette, Indiana 47907 U.S.A.

SUMMARY: The reaction of nonconjugated monosubstituted alkenes with t-BuMgCl and Cl₂ZrCp₂ at room temperature produces the corresponding monoalkylzirconium derivatives in high yields, while conjugated alkenes undergo either a novel t-butylzirconation or hydrozirconation depending on the reaction conditions.

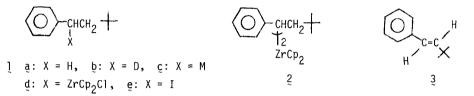
Hydrozirconation² is one of a relatively few reactions permitting the conversion of alkenes into terminally metalated alkylmetal derivatives under mild conditions. However, the preparation of the commonly used reagent, $HZrCp_2Cl(Cp = n^5-c_5H_5)$, by the reduction of Cl_2ZrCp_2 with an aluminum hydride, such as $LiAlH_4^3$ or $NaAlH_2(OCH_2CH_2OCH_3)_2$,^{2b} requiring filtration under an inert atmosphere is inconvenient. We have found that the reaction of nonconjugated monosubstituted alkenes with 1.1 equiv of *t*-BuMgC1 and 1 equiv of Cl_2ZrCp_2 in benzene-ether (5:1) at room temperature cleanly produces the corresponding monoalkylzirconium derivatives in high yields, as in eq 1. On the other hand, conjugated alkenes, such as styrene, 1,3-butadiene, and isoprene, undergo a novel *t*-butylzirconation, as in eq 2, under the same conditions. Interestingly, if Cl_2ZrCp_2 is treated first with *t*-BuMgC1 in benzene in the absence of free ether and then with styrene, hydrozirconation of styrene is the major course of the reaction (eq 2). All of these reactions are indeed Zr-promoted, since none proceeds in the absence of Cl_2ZrCp_2 under otherwise comparable conditions.

$$\begin{array}{c} + & MgC1 \ (1.1 \ equiv) \\ C1_2ZrCp_2 \ (1 \ equiv) \\ benzene-ether \end{array} \xrightarrow{n-C_8H_{17}ZrCp_2C1} (1) \\ + & MgC1 \ (1.1 \ equiv) \\ C1_2ZrCp_2 \ (1 \ equiv) \\ benzene-ether \end{array} \xrightarrow{n-C_8H_{17}ZrCp_2C1} (2) \\ C_{6}H_5CH=CH_2 \\ + & MgC1 \ (1.1 \ equiv) \\ C1_2ZrCp_2 \ (1 \ equiv) \\ C1_2ZrCp_2 \$$

With the hope of developing a convenient "one-pot" procedure for hydrozirconation, we treated a 1:1 mixture of 1-octene and Cl_2ZrCp_2 with various metal hydrides and alkylmetals. As indicated by the results summarized in Table 1, the course of reaction heavily depends on both the hydride source and solvents. Thus, NaAlH₂(OCH₂CH₂OCH₃)₂^{2b} is a satisfactory reagent in benzene-ether, but LiAlH₄³ is not, as judged by the yield of 1-iodooctane obtained after iodinolysis. However, LiAlH₄ is satisfactory in tetrahydrofuran (THF). Of the alkylmetals tested in this study only *t*-BuMgCl provided, after iodinolysis, 1-iodooctane in satisfactory yield. The competitive formation of *n*-octane in cases where LiBH(Bu-s)₃, *t*-BuLi, or *i*-BuMgCl is used may readily be accounted for in terms of the formation of *n*-OctZrCp₂H followed by its reductive elimination.⁴ Unlike LiBH(Bu-s)₃, *t*-BuMgCl presumably is sufficiently unreactive toward *n*-OctZrCp₂Cl so that its conversion into *n*-OctZrCp₂H is much slower than the desired hydrozirconation. On the other hand, HSn(Bu-s)₃ and *t*-BuZnCl failed to induce even the desired hydrozirconation.

That the reaction of 1-octene with t-BuMgCl and Cl_2ZrCp_2 produces $n-OctZrCp_2Cl$ is indicated by a ¹H NMR singlet at 6.15 ppm⁵ superimposable with that observed in the reaction of 1-octene with HZrCp_2Cl. The yield of $n-OctZrCp_2Cl$ determined by ¹H NMR using toluene as an internal standard is 86%. Hydrozirconation using t-BuMgCl and Cl_2ZrCp_2 may proceed by the transmetallation-elimination-hydrozirconation mechanism shown in eq 3. Alternatively, 1-octene may react directly with t-BuZrCp_2Cl via a six-centered transition state, as shown in eq 4.

$$Cl_2ZrCp_2 \xrightarrow{t-BuMgCl} t-BuZrCp_2Cl \longrightarrow HZrCp_2Cl + \underbrace{n-HexCH=CH_2}_{n-0ctZrCp_2Cl} n-0ctZrCp_2Cl (3)$$


$$t-BuZrCp_2C1 \xrightarrow{n-HexCH=CH_2} H \xrightarrow{CH_2 - C(CH_3)_2} ZrCp_2C1 \longrightarrow n-OctZrCp_2C1 +$$

$$(4)$$

The t-BuMgCl-Cl₂ZrCp₂ procedure has also been applied to the conversion of 4-penten-l-ol and 4-vinyl-l-cyclohexene into 5-iodo-l-pentanol (56%) and 4-(2'-iodoethyl)-l-cyclohexene (81%), respectively, in isolated yields indicated in parentheses. The following procedure for the preparation of 4-(2'-iodoethyl)-l-cyclohexene is representative. 4-Vinyl-l-cyclohexene (0.22 g, 2.0 mmol) and Cl₂ZrCp₂ (0.58 g, 2.0 mmol) in 5 mL of benzene were treated with 2.18 *M* t-BuMgCl (1.0 mL, 2.2 mmol) in ether at room temperature. After stirring overnight at room temperature, the reaction mixture was treated with 0.65 g (2.5 mmol) of iodine dissolved in benzene. The mixture was treated with aqueous sodium sulfite and pentane. The organic layer was washed with aqueous NaCl, dried over MgSO₄, and distilled to give 0.38 g (81%) of 4-(2'-iodoethyl)-l-cyclohexene.⁶ Since t-BuMgCl is obtainable from Mg and t-BuCl, which in turn is obtainable from isobutylene and HCl, a combination of HCl and Mg acts as an economical hydride source. In the conversion of an alkene into the corresponding alkenyl iodide, not only isobutylene but also X_2 ZrCp₂ (X = Cl and/or I) are recyclable.

The reaction of conjugated alkenes with t-BuMgCl-Cl₂ZrCp₂ under the same conditions took an

entirely different course. Thus, for example, styrene gave, after protonolysis, 1-phenyl-3,3-dimethylbutane (la) in 86% yield along with only 9% of ethylbenzene. Deuterolysis of the mixture with D_20 led to an essentially 100% incorporation of deuterium in the benzylic position giving lb. The product before quenching must therefore be an organometal represented by lc. ¹H NMR examination of the reaction mixture before quenching reveals the presence of three sharp singlets at δ 5.95, 6.20, and 6.41 ppm. We tentatively conclude on the basis of the above observations that the three signals correspond to 2, ld, and Cl₂ZrCp₂, respectively. The integrations of the Cp signals relative to that for the methyl group of toluene added as an internal standard indicate that the yields of these species are 25, 46,and 10%, respectively. Treatment

of the reaction mixture with iodine produced, after a standard workup, an 88% yield of (E)- β t-butylstyrene (3) along with a small amount (7%) of 2-iodoethylbenzene. It is likely that le was the initial product, even though no attempts have been made to isolate and/or identify le. The corresponding reaction of s-BuMgCl under otherwise the same conditions produced, after iodinolysis, 2-iodoethylbenzene in 66% yield, with 25% of styrene still remaining unreacted. Thus, the scope of the novel carbometallation reaction appears to be limited to tertiary alkylmagnesium derivatives. The t-BuMgCl-Cl $_2$ ZrCp $_2$ reagent system also reacts with 1,3-butadiene and isoprene to produce, after protonolysis, 5,5-dimethyl-1-hexene (88%) and a 3:2 mixture of 2,5,5-trimethyl-l-hexene and 3,5,5-trimethyl-l-hexene (55% combined), respectively, in yields indicated in parentheses. The apparent requirements for conjugated alkenes and tertiary alkylmagnesium derivatives as well as the observed regiochemistry suggest that the carbometallation reaction may be a free radical process. Although this point remains to be clarified, it is certain that the reaction does not proceed in the absence of $C1_2 ZrCp_2$ under otherwise comparable conditions. When Cl_ZrCp $_2$ was treated first with t-BuMgCl in benzene in the absence of free ether (15 min, room temp) and then with styrene (18 h, room temp), ethylbenzene was obtained in ca. 60% yield after protonolysis along with only a trace of la. Iodinolysis of the reaction mixture produced a 9:1 mixture of 2- and 1-iodoethylbenzenes in 55% yield. This regiochemistry is in sharp contrast with that producing benzylmetal species observed in the Cl₂TiCp₂-catalyzed hydromagnesation of styrene with PrMgBr.^{7d}

Unlike the Ti-catalyzed hydromagnesation⁷ or the Zr-catalyzed hydroalumination,⁸ the reaction of alkenes with Grignard reagents and Cl_2ZrCp_2 is not catalytic in Zr. We believe that the transition metal-catalyzed hydrometallation requires two transmetallation steps proceeding in the mutually opposite directions and that such a catalytic system requires a pair of metals whose electronegativities are close to each other. The Mg-Ti and Al-Zr combinations evidently satisfy the above requirement, whereas the experimental data presented herein indicate that the Mg-Zr system is incapable of transferring an alkyl group from Zr to Mg.

Acknowledgments are made to NSF, NIH, ACS-PRF, and Hoffmann-La Roche, Inc. for support of this research.

Metal hydride			Product yield, ^b %	
or alkylmetal	Time, h	1-Octene, %	<i>n</i> -Octane	n-OctI
LiAlH ₄ °	1	20	24	29
$LiAIH_4^{c,d}$	1	8	5	84
$\operatorname{NaA1H}_2(\operatorname{OCH}_2\operatorname{CH}_2\operatorname{OCH}_3)_2^e$	1	trace	trace	93
LiBH(Bu-s) ₃	1	9	18	69
HSn(Bu-n)3	3	95	trace	trace
t-BuLi	1	15	29	49
t-BuMgCl	18 ^f	trace	trace	93
i-BuMgCl	1	45	43	6
t-BuZnCl	3	80	trace	trace

Table I. Treatment of a 1:1 Mixture of 1-Octene and Zirconocene Dichloride with a Metal Hydride or an Alkylmetal^{α}

^{*a*}Unless otherwise mentioned, the reaction was carried out at 25°C in benzene-ether using 1 mol equiv of the reagent. ^{*b*}The reaction mixture was treated with iodine and analyzed by GLC (SE-30). ^{*c*}One quarter molar equiv was used. ^{*d*}The reaction was carried out in THF. ^{*e*}One half molar equiv was used. ^{*f*}The minimum required time was not established.

REFERENCES AND NOTES

- Selective Carbon-Carbon Bond Formation via Transition Metal Catalysis. 40. Controlled Carbometalation. 18. Part 17: Miller, J. A.; Negishi, E. Israel J. Chem. in press.
- 2. (a) Wailes, P. C.; Weigold, H.; Bell, A. P. J. Organometal. Chem. 1972, 43, C32.
 (b) Hart, D. W.; Schwartz, J. J. Am. Chem. Soc. 1974, 96, 8115. (c) For a review, see Schwartz, J. J. Organometal. Chem. Library 1976, 1, 461.
- 3. Wailes, P. C.; Weigold, H. J. Organometal. Chem. 1970, 24, 405.
- 4. (a) Gell, K. I.; Schwartz, J. J. Am. Chem. Soc. 1978, 100, 3246. (b) Yoshifuji, M; Gell, K. I.; Schwartz, J. J. Organometal. Chem. 1978, 153, C15.
- 5. The following monograph contains many ¹H NMR data for the ZrCp₂ group pertinent to those discussed here: Wailes, P. C.; Couths, R. S. P.; Weigold, H. "Organometallic Chemistry of Titanium, Zirconium, and Hafnium," Academic Press, New York, 1974.
- 6. Brown, H. C.; Rathke, M. W.; Rogić, M. M. J. Am. Chem. Soc. 1968, 90, 5038.
- 7. (a) Cooper, G. D.; Finkbeiner, H. L. J. Org. Chem. 1962, 27, 1493. (b) Finkbeiner, H. L.; Cooper, G. D. *ibid.* 1962, 27, 3395. (c) Ashby, E. C.; Ainslie, R. D. J. Organometal. Chem. 1983, 250, 1. (d) For the Ti-catalyzed hydromagnesation of conjugated alkenes, see Sato. F.; Ishikawa, H.; Sato, M. Tetrahedron Lett. 1980, 21, 365.
- 8. Negishi, E.; Yoshida, T. Tetrahedron Lett. 1980, 21, 1501.

(Received in USA 7 March 1984)